Computed Tomography of the Sacral Plexus and Sciatic Nerve in the Greater Sciatic Foramen

Charles F. Lanzieri
Sadek K. Hilal

The sacral plexus forms the sciatic nerve, which leaves the pelvis through the greater sciatic foramen. The anatomic boundaries of the greater sciatic foramen and the relation of the sacral plexus and sciatic nerve to the structures within are identified and described on axial computed tomography (CT). The piriform muscle, which passes through the center of the greater sciatic foramen, is a recognizable landmark that is extremely helpful in locating the sacral plexus and sciatic nerve on CT. The pelvic CT images of 25 patients studied for unrelated reasons and two patients studied for complaints related to the greater sciatic foramen were reviewed. CT was very useful in demonstrating the anatomy of this region and for the investigation of sciatic pain due to lesions outside the neural canal.

Neurologic symptoms referable to the sacral nerve roots may be due to intradural, extradural, or sacral processes. Diseases affecting the soft tissues in the parasacral spaces, in particular the greater sciatic foramen, may result in similar neurologic symptoms without causing myelographic or plain-film changes. The anatomy of this region can be reliably evaluated by axial computed tomography (CT).

The CT anatomy of the pelvis, sacrum, and adjacent soft tissues has been described in both normal and pathologic states [1–3]. Also, the role of CT in the evaluation of patients with complaints referable to the sacral nerves has been pointed out [4, 5]. But the detailed CT anatomy of the parasacral spaces as they relate to the sacral plexus and sciatic nerve has not been described fully. That is the subject of this report. The clinical relevance of these details in patients with complaints referable to the sacral plexus or sciatic nerve is also developed.

Materials and Methods

We reviewed pelvic CT images of 25 patients studied for various reasons unrelated to the structures in the greater sciatic foramen. All the studies were performed in the axial plane on the Pfizer 0450 CT scanner. The slice thickness varied from 4 to 8 mm. Two patients with pain and/or neurologic or electromyographic findings referable to the sacral plexus or sciatic nerve known to have neurofibromatosis were also studied. All of the patients received intravenous contrast material. Plain films of the pelvis were unremarkable in all cases.

Anatomy

The greater sciatic foramen is an oval space in the posterolateral aspect of the pelvis bordered by the ilium superiorly, the ischium anteriorly, the sacrum posteriorly, and the sacrospinous ligament inferiorly (fig. 1). The posterior border of the innominate bone below the sacroiliac articulation and above the ischial tuberosity curves sharply anteriorly and follows a long sweeping curve inferiorly, interrupted by the ischial spine just before its inferior termination [1, 6]. Two indentations are thus formed: the greater sciatic notch, which begins at the junction of the sacrum with the ilium and ends at the ischial spine; and the lesser sciatic notch, which is much smaller and is just below the ischial spine. The greater sciatic...
The greater sciatic foramen transmits several important structures. The piriform muscle originates on the ventral surface of the sacrum and passes through the center of the foramen in a medial to lateral direction to insert on the greater trochanter. The sacral plexus is a triangular structure that rests on the anterior surface of the belly of the piriform muscle. It receives contributions from the ventral sacral nerves exiting the anterior foramina of the sacrum and from the lumbosacral trunk descending from the lumbar plexus. From its inferiorly directed apex the sciatic nerve traverses the foramen, crossing the anterior third of the foramen on the anterior surface of the piriform perpendicular to that muscle’s long axis, and passing just posterior to the sacrotuberous ligament at its insertion on the ischial spine. The gluteal artery and vein and superior gluteal nerve also exit the pelvis via the greater sciatic foramen. They pass through the upper part just above the piriform. The internal pudendal nerve and vessels and nerves to the internal obturator muscle and quadratus muscle of the thigh pass through the foramen just anterior to the piriform.

CT Observations

The piriform muscle was demonstrated in all cases and served as a useful landmark in identifying the other structures in the greater sciatic foramen. The entire extent of the greater
Inability to differentiate the sacral plexus from the piriform muscle was usually because the fat plane between these two structures was not prominent. The fascial plane anterior to the piriform muscle communicates with the presacral space and thus with the opposite side. Unlike the anterior fascial plane, the fascial plane posterior to the piriform does not cross the midline and ends medially at the lateral border of the sacrum.

Axial sections through the inferior part of the greater sciatic foramen include the sacrospinal ligament but not the piriform muscle. This structure appears as a thin line running in an oblique direction from the anterior lateral border of the sacrum to the ischial spine and is a reliable landmark for the inferior part of the greater sciatic foramen (fig. 2C). It is much more gracile and linear than the piriform and forms the lower margin of the greater sciatic foramen rather than passing through it. The two structures are, therefore, easily distinguished in most cases. At this level the sciatic nerve could be identified as a roughly circular structure lateral to the anterior insertion of the sacrospinal ligament and posterior to the ischial spine in 16 (80%) of the 20 patients in whom the entire greater sciatic foramen was demonstrated (fig. 2C). In leaving the pelvis the sciatic nerve passes ventrad to the belly of the piriform and directly behind the sacrospinal ligament. In doing so it traverses the slitlike opening between these two structures. Measurement of the diameter of the sciatic nerve was made as close to the insertion of the sacrospinal ligament on the ischial spine as possible in these 16 patients. The largest diameter of the sciatic nerve at this level was 0.9–1.2 cm. In four patients, the sciatic nerve could not be identified definitely despite adequate cuts through the greater sciatic foramen. This was because of superimposition of adjacent contiguous soft-tissue structures, for example, blood vessels or lymph nodes.

Like the piriform, the sacrospinal ligament is surrounded anteriorly and posteriorly by prominent fascial planes. The space anterior to the ligament is the same space that contains the sacral plexus more superiorly. The space posterior to the ligament containing the sciatic nerve is limited medially by the sacrum. Recognition of the integrity of the fascial planes in the region of the greater sciatic foramen is important. Obliteration of these planes may be caused by inflammation, neoplasm, or hematoma.

Patients with extensive neurofibromatosis may have symptomatic involvement of the sacral plexus or sciatic nerve. Examples of each of these serve to emphasize the anatomic
relations already described. Tumors of the sacral plexus will be identified within the fascial plane anterior to the piriform muscle in the superior part of the greater sciatic foramen (fig. 3A). Tumors of the sciatic nerve will be located in the fascial plane posterior to the sacrospinous ligament in the inferior part of the greater sciatic foramen (figs. 3B and 3C).

Discussion

The relation of the sacral plexus and sciatic nerve to each other and to surrounding structures can be understood easily by dividing the greater sciatic foramen into a superior part containing the piriform muscle and the sacral plexus, and an inferior part containing the sacrospinous ligament and upper sciatic nerve. The piriform muscle and the sacrospinous ligament are reliable landmarks for identifying the superior and inferior parts of the greater sciatic foramen. The sciatic nerve can be reliably identified and measured when the entire greater sciatic foramen is demonstrated in high-resolution axial CT images. Sufficient fat within the greater sciatic foramen does not appear to hinder identification and measurement of the sciatic nerve; however, in some cases it is not possible to differentiate the sciatic nerve from adjacent blood vessels or lymph nodes. Definite identification and measurement of the sacral plexus is somewhat less reliable, largely because of difficulty in differentiating the sacral plexus from the piriform muscle.

Lesions of the sacrum are known to produce complaints referred to the sacral nerves and sacral plexus. These processes have specific radiographic and CT manifestations [3–5]. Lesions of the sacral plexus or sciatic nerve may not affect the sacrum, and particular attention must be paid to the fascial planes and soft tissues surrounding the sacral plexus and sciatic nerve. Unsuspected abnormalities of the soft tissues surrounding the sacrum will not be evident on plain films or myelography. Lesions of the sacral plexus and sciatic nerve as they traverse the greater sciatic foramen are easily evaluated with CT. Further study of pathologic processes within the greater sciatic foramen is required to determine to what extent regional lymph-node enlargement and other pathologic entities may involve the sacral plexus and sciatic nerve.

REFERENCES